

### **TOPICS**

- » Overall goals, objectives and scope of the evaluation
- » Renewable fuel use verification
- » SGIP customer load data
- » Advanced energy storage
- » Questions and Answers



2

### **OVERVIEW**

- Overall goal of the 2014-15 SGIP impact evaluation
  - Expected versus observed impacts (peak demand, GHG and criteria air pollutant emission reductions, renewable fuel use, energy savings)
- » Objectives
  - Transparency in approach and methodology
  - Reproducible results based on project level data
  - Actionable recommendations
- » Scope
  - Impacts of the SGIP during 2014-15 using available data and agreed upon methodology
- » Focus today is primarily on data issues encountered and how to address these moving forward

# RENEWABLE FUEL USE VERIFICATION

Data Issues and Recommendations



### **OVERVIEW**

- » Regulatory Requirements
- Analytic Approach
  - On-Site Biogas Verification
  - Directed Biogas Verification
- » Data Issues
- » Conclusions and Recommendations

### REGULATORY REQUIREMENTS

Genesis of the Renewable Fuel Use Reports

- » CPUC Decision 02-09-051 (September 19, 2002)
  - Established increased incentives for renewable projects
  - Created renewable fuel use report to:
    - Verify compliance with minimum renewable fuel use requirements (prevent fuel switching)
    - Provide information on renewable project costs (in support of program design)
    - Must be filed every six months
- » CPUC Rulemaking 12-11-005 (November 8, 2012)
  - Decreased reporting frequency from semi-annual to annual

### **COMPLIANCE OVERVIEW**



metered data

other documents

### **HISTORY OF RFU COMPLIANCE**

Blended On-Site Biogas Projects

|                      |      | Size  | Digester |              | RFU Repor |     |     |     |     | t No. |     |     |    |     |     |     |     |     |     |     |    |
|----------------------|------|-------|----------|--------------|-----------|-----|-----|-----|-----|-------|-----|-----|----|-----|-----|-----|-----|-----|-----|-----|----|
| SGIP Reservation No. | Туре | (kW)  | Input    | Payment Date | 8         | 9   | 10  | 11  | 12  | 13    | 14  | 15  | 16 | 17  | 18  | 19  | 20  | 21  | 22  | 23  | 24 |
| SCE-SGIP-2003-0092   | FC   | 500   | WWTP     | 11-Mar-05    | ??        | Yes | ??  | Yes | Yes | No    | Yes | Yes |    |     |     |     |     |     |     |     |    |
| SCE-SGIP-2003-0017   | ICE  | 500   | WWTP     | 11-May-05    |           | Yes | Yes | Yes |     |       |     |     |    |     |     |     |     |     |     |     |    |
| SCE-SGIP-2004-0158   | ICE  | 704   | WWTP     | 25-Oct-06    |           |     |     | ??  | ??  | ??    | ??  |     |    |     |     |     |     |     |     |     |    |
| SCE-SGIP-2004-0159   | ICE  | 704   | WWTP     | 26-Oct-06    |           |     |     | ??  | ??  | ??    | ??  |     |    |     |     |     |     |     |     |     |    |
| PGE-SGIP-2005-1313   | MT   | 240   | WWTP     | 06-Mar-07    |           |     |     |     | Yes | Yes   | Yes | Yes |    |     |     |     |     |     |     |     |    |
| SCE-SGIP-2006-0062   | FC   | 900   | WWTP     | 04-Mar-08    |           |     |     |     |     |       | Yes | Yes | No | No  | Yes | No  | Yes | No  |     |     |    |
| PGE-SGIP-2006-1490   | FC   | 600   | WWTP     | 24-Apr-08    |           |     |     |     |     |       | Yes | Yes | No | No  | No  | Yes | Yes | Yes |     |     |    |
| SCG-SGIP-2006-0036   | FC   | 1,200 | WWTP     | 27-Oct-08    |           |     |     |     |     |       |     | No  | No | No  | No  | No  | Yes | Yes | Yes |     |    |
| PGE-SGIP-2007-1749   | ICE  | 130   | WWTP     | 09-Nov-09    |           |     |     |     |     |       |     |     |    | Yes | Yes | Yes | Yes |     |     |     |    |
| SCG-SGIP-2008-0003   | FC   | 600   | Food     | 14-Dec-09    |           |     |     |     |     |       |     |     |    | No  |    |
| SCG-SGIP-2006-0012   | FC   | 900   | WWTP     | 18-Dec-09    |           |     |     |     |     |       |     |     |    | No  | No  | No  | No  | Yes | No  | Yes |    |
| SD-SGIP-2007-0351    | ICE  | 560   | WWTP     | 16-Apr-10    |           |     |     |     |     |       |     |     |    |     | Yes | Yes | Yes | Yes |     |     |    |
| SCE-SGIP-2010-0334   | FC   | 250   | WWTP     | 31-Oct-10    |           |     |     |     |     |       |     |     |    |     |     | ??  | ??  | ??  | ??  | ??  | ?? |
| SCE-SGIP-2010-0002   | FC   | 500   | WWTP     | 31-Oct-10    |           |     |     |     |     |       |     |     |    |     |     | No  | No  | No  | Yes | Yes | ?? |
| SCE-SGIP-2009-0003   | FC   | 300   | WWTP     | 30-Aug-11    |           |     |     |     |     |       |     |     |    |     |     |     |     | No  | No  | No  | ?? |
| SD-SGIP-2009-0362    | FC   | 300   | WWTP     | 21-Dec-11    |           |     |     |     |     |       |     |     |    |     |     |     |     | No  | Yes | Yes | ?? |
| SCE-SGIP-2009-0013   | FC   | 600   | WWTP     | 28-Mar-12    |           |     |     |     |     |       |     |     |    |     |     |     |     |     | No  | No  | No |
| PGE-SGIP-2010-1867   | FC   | 1,400 | WWTP     | 29-Nov-12    |           |     |     |     |     |       |     |     |    |     |     |     |     |     |     | Yes | No |
| SCG-SGIP-2010-0026   | FC   | 2,800 | WWTP     | 21-Dec-12    |           |     |     |     |     |       |     |     |    |     |     |     |     |     |     | No  | No |
| PGE-SGIP-2012-2061   | ICE  | 3,800 | WWTP     | 31-Oct-13    |           |     |     |     |     |       |     |     |    |     |     |     |     |     |     |     | ?? |
| SCE-SGIP-2011-0348   | ICE  | 650   | WWTP     | 18-Jun-14    |           |     |     |     |     |       |     |     |    |     |     |     |     |     |     |     |    |



### **MOTIVATION**

Why is Itron occasionally unable to make compliance determinations for on-site or directed biogas projects?

### **BLENDED ON-SITE BIOGAS**

Overview



### **BLENDED ON-SITE BIOGAS**

Compliance Approach

Most often, natural gas input and electric output are known...



### **BLENDED ON-SITE BIOGAS**

Key Issues

- » Assuming a low electrical efficiency results in an optimistic compliance determination rather than a specific biogas usage
  - As the SGIP moves towards an incentive mechanism that hinges on achieving specific biogas percentages, this approach will no longer suffice
  - Metered natural gas and renewable biogas consumption data are necessary to quantify specific biogas usage targets
- » Historical instances where compliance cannot be determined are due to more than one data stream (electricity, natural gas, or biogas) being missing
- » New program rules are expected to alleviate these data issues

### **DIRECTED BIOGAS**

#### Overview

- » Based on AESC's directed biogas audit protocols (11/23/2011)
  - Requires review of documentation such as invoices, pipeline imbalance statements, and other utility documents to determine renewable fuel use

#### Biogas Pool Tracking



### **DIRECTED BIOGAS**

Key Issues

- » Directed biogas compliance determinations fail for one of two reasons:
  - Data and documentation are not provided in a timely manner to the evaluation contractor or auditor, or
  - The data and documentation provided are unclear or not legible



### **CONCLUSIONS AND RECOMMENDATIONS**

Future Program Design

- » Metered natural gas and biogas consumption data must be made available from all blended biogas projects
  - The data must be available in a timely manner in order for findings to be included in future Renewable Fuel Use Reports
- » Directed biogas documentation must be provided in a prescribed, timely and legible manner to the Program Administrators
  - Clear protocols must be established that describe acceptable types of documentation and their format
  - We recommend a mirroring of the California Energy Commission pipeline biomethane verification forms
- » Clear consequences must exist for non-compliance with the above data collection requirements
  - These can be related to PBI payments



# **CUSTOMER LOAD DATA**

Why do we need it, how do we use it, and main issues





### **CUSTOMER LOAD DATA**

- Why do we need it?
  - Understanding customer demand impacts and AES operation
  - Quantify the amount of reductions of SGIP aggregate noncoincident customer peak demand required by statute (SB 861)
- » How did we use it?
  - Match to hourly site level generation or charge/discharge
  - Look at how much customer peak was reduced:
    - On an annual basis
    - On a monthly basis and then averaged over the year or season
- » Issues
  - Utilities required NDA's that took significant time
  - Couldn't match all projects to load data



### **CUSTOMER DEMAND IMPACTS**



Consistent operation ->large demand reduction



### **CUSTOMER DEMAND IMPACTS**



Outage yields to minimal annual peak demand reduction



### **AES CUSTOMER DEMAND IMPACT**

200 kW AES



Peak reduction but only a fraction of rated capacity

# AGGREGATE NONCOINCIDENT CUSTOMER PEAK DEMAND REDUCTION

2015



- » All Electric Fuel Cells run almost 24/7/365 so significantly reduce customer peak demand
- » AES had surprisingly low impact on customer demand



### **CLOSING THOUGHTS ON LOAD DATA**

- » Need customer load matched to SGIP projects to evaluate noncoincident peak demand impacts as required under SB 861
- » Especially important for AES project where dispatch is likely driven by customer load

# ADVANCED ENERGY STORAGE (AES) ANALYSIS

### **ORIGINAL AES ANALYSIS PLAN**

vs. analyses ultimately performed

| D                               | ata requi       | irements     |            |                                                                                                        |
|---------------------------------|-----------------|--------------|------------|--------------------------------------------------------------------------------------------------------|
| Storage<br>charge/<br>discharge | Utility<br>Load | Site<br>Load | PV<br>Gen. | Metrics generated by E3                                                                                |
| ✓                               | ✓               | ✓            | <b>√</b>   | <ul><li>cap factor</li><li>Efficiency</li></ul>                                                        |
| ✓                               | <b>√</b>        | est.         | ✓          | <ul><li>Timing of charge &amp; discharge</li><li>TOU rate arbitrage</li><li>Charging from PV</li></ul> |
| ✓                               | ✓               | est.         | simulate   | <ul><li>Demand charge reduction</li><li>On-peak energy</li><li>Peak demand reduction</li></ul>         |
| ✓                               | ✓               | -            | -          | All above except:  • Charging from PV PBI analyses                                                     |
| ✓                               | -               | -            | -          | All above except:  • Charging from PV  • Demand charge reduction  Non-res, non-PBI analyses            |
| ✓ Data had inaccuracies         | -               | -            | -          | <ul> <li>TOU rate arbitrage</li> <li>Timing of charge &amp; discharge analyses</li> </ul>              |

More data available

# NON-RESIDENTIAL AES PROJECTS

### **DATA ISSUES**

- » AES Installer Non-PBI Data
  - Difficult to obtain non-PBI data
    - Many conversations and follow up, delays, pushback, etc.
    - Data ultimately only provided by a handful of operators
  - Could not match individual projects with associated customer load data
    - Data provider provided only anonymized data (identified by sector, IOU, and size)
- » Delays in receiving load data
  - Critical for understanding customer demand impacts and AES operation
  - Utilities required NDA's that took significant time

# PBI PROJECT DATA (≥ 30KW)

- Sample of 21 projects with charge/discharge data:
   72% of PBI projects operating in 2015
- Able to match 12 projects to IOU load data

### Projects operating in 2014:



### Projects operating in 2015:



# NON-PBI, NON-RESIDENTIAL PROJECT DATA

- Sample of 94 projects with charge/discharge data: 64% of non-PBI, non-res projects operating in 2015
- Not able to match any projects to IOU Load data
  - Anonymized data → impossible to match to IOU load data

Projects operating in 2014: No data available

Projects operating in 2015:



### **INSTALLATIONS OVER TIME**

Non-residential AES projects



- » Very little 2014 data → Results presented for 2015 only
- » Increasing data availability towards end of year (after Summer peak)



### **NON-RES ANALYSES**

## With our data sample, we were able to analyze:

| Metric                                                     | PBI AES projects         | Non-PBI AES projects |
|------------------------------------------------------------|--------------------------|----------------------|
| Utilization / capacity factors                             | ✓                        | ✓                    |
| Round-trip efficiency                                      | ✓                        | ✓                    |
| Charge/discharge timing                                    | ✓ (2015 only)            | ✓ (2015 only)        |
| Coincident peak impacts                                    | ✓ (2015 only)            | ✓ (2015 only)        |
| CO <sub>2</sub> impacts                                    | ✓ (2015 only)            | ✓ (2015 only)        |
| Charging behavior motivation & Non-Coincident peak impacts | √ (indicative only: n=5) | ×                    |

### **AES UTILIZATION**

Non-residential AES projects, 2015

Storage discharge "capacity factor" defined as:

kWh Discharge Hours of Data × Discharge Capacity × 60%\*

\*60% represents the SGIP Handbook assumption of 5,200 discharge hours per yr (5,200 / 8,760 = 60%)



SGIP assumes 520-hr equivalent annual discharge for PBI projects = 10% cap. factor (520 / 5,200 hrs)

18 of 21 (86%) PBI projects had capacity factors of at least 10% (required to receive full PBI payment)

### ROUNDTRIP EFFICIENCY

» RTE = total kWh of discharge from the storage project total kWh of charge

Non-residential AES projects, 2014 - 2015



SGIP PBI requirement, 2014 – 2015: 63.5% annual RTE

- All but one PBI project met the SGIP Handbook requirement of 63.5%
- Only 5% of non-PBI projects had an RTE of 63.5% or more

### CHARGE/DISCHARGE TIMING: PBI PROJECTS CHARGE OVERNIGHT, DISCHARGE IN EVENING

Total kWh of Discharge (Charge) per kW Rebated Capacity, PBI Projects 2015

|   | Mon | ith: 1 | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    |
|---|-----|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|   | 0   | -0.05  | -0.29 | -0.39 | -0.54 | -0.94 | -1.35 | -1.43 | -1.65 | -1.63 | -1.49 | -1.18 | -1.07 |
|   | 1   | -0.04  | -0.27 | -0.31 | -0.40 | -0.56 | -0.91 | -0.73 | -1.15 | -1.14 | -1.23 | -1.55 | -1.18 |
|   | 2   | -0.04  | -0.26 | -0.28 | -0.33 | -0.19 | -0.39 | -0.18 | -0.66 | -0.56 | -0.77 | -1.27 | -1.07 |
|   | 3   | -0.04  | -0.22 | -0.22 | -0.30 | -0.07 | -0.15 | -0.11 | -0.43 | -0.31 | -0.57 | -0.79 | -0.76 |
|   | 4   | -0.04  | -0.14 | -0.19 | -0.23 | -0.05 | -0.09 | -0.06 | -0.26 | -0.16 | -0.37 | -0.59 | -0.56 |
|   | 5   | -0.03  | -0.08 | -0.18 | -0.16 | -0.03 | -0.05 | -0.04 | -0.18 | -0.11 | -0.37 | -0.45 | -0.47 |
|   | 6   | -0.02  | -0.03 | -0.13 | -0.11 | -0.02 | -0.03 | -0.02 | -0.12 | -0.07 | -0.27 | -0.39 | -0.39 |
|   | 7   | -0.01  | 0.00  | -0.04 | 0.01  | -0.02 | 0.00  | -0.01 | -0.01 | -0.03 | -0.17 | -0.28 | -0.31 |
|   | 8   | -0.01  | 0.05  | -0.01 | 0.12  | -0.01 | 0.03  | 0.00  | 0.07  | 0.03  | -0.02 | -0.12 | -0.16 |
|   | 9   | 0.01   | 0.07  | -0.01 | 0.03  | 0.00  | 0.03  | -0.05 | -0.01 | -0.02 | 0.08  | 0.02  | -0.01 |
| Н | 10  | 0.00   | 0.07  | -0.01 | 0.03  | 0.02  | 0.06  | -0.01 | 0.07  | 0.04  | -0.02 | 0.06  | 0.00  |
| 0 | 11  | -0.01  | 0.08  | 0.06  | 0.09  | 0.13  | 0.22  | 0.03  | 0.21  | 0.18  | 0.16  | 0.24  | 0.15  |
| u | 12  | -0.01  | 0.07  | 0.11  | 0.09  | 0.12  | 0.37  | 0.08  | 0.29  | 0.20  | 0.23  | 0.28  | 0.27  |
| r | 13  | 0.02   | 0.07  | 0.10  | 0.09  | 0.14  | 0.44  | 0.11  | 0.26  | 0.24  | 0.20  | 0.28  | 0.16  |
|   | 14  | -0.01  | 0.09  | 0.12  | 0.20  | 0.36  | 0.52  | 0.25  | 0.39  | 0.31  | -0.17 | -0.08 | -0.22 |
|   | 15  | -0.02  | 0.10  | 0.14  | 0.27  | 0.62  | 0.65  | 0.68  | 0.82  | 0.48  | -0.17 | -0.06 | 0.07  |
|   | 16  | 0.04   | 0.16  | 0.16  | 0.23  | 0.60  | 0.46  | 0.63  | 1.12  | 0.39  | -0.10 | 0.01  | -0.09 |
|   | 17  | 0.02   | 0.21  | 0.24  | 0.21  | 0.20  | 0.12  | 0.14  | 0.54  | 0.17  | 0.11  | 0.02  | -0.03 |
|   | 18  | 0.00   | 0.18  | 0.24  | 0.21  | 0.18  | 0.17  | 0.26  | 0.53  | 0.88  | 1.23  | 0.44  | 0.28  |
|   | 19  | 0.01   | 0.14  | 0.17  | 0.12  | 0.19  | 0.26  | 0.48  | 0.68  | 1.06  | 1.51  | 1.58  | 1.34  |
|   | 20  | -0.01  | 0.03  | 0.08  | 0.03  | 0.13  | 0.23  | 0.38  | 0.56  | 0.75  | 1.42  | 1.68  | 1.50  |
|   | 21  | -0.01  | -0.12 | -0.11 | -0.16 | -0.57 | -0.65 | -0.72 | -1.13 | -0.97 | -0.64 | 0.99  | 1.26  |
|   | 22  | -0.05  | -0.31 | -0.20 | -0.17 | -0.45 | -0.31 | -0.08 | -0.40 | -0.49 | -0.10 | -0.71 | -0.59 |
|   | 23  | -0.05  | -0.29 | -0.30 | -0.38 | -0.94 | -1.01 | -0.98 | -1.62 | -1.31 | -1.06 | -0.11 | -0.20 |

Charging overnight, when energy is cheap and emissions are low; discharging in evening, when demand is highest and energy most expensive

### **CHARGE/DISCHARGE TIMING:**

### NON-PBI, NON-RES PROJECTS: CHARGING NOT COORDINATED

Total kWh of Discharge (Charge) per kW Rebated Capacity, Non-PBI Projects 2015

|   |    |       |       |       |       |       | Mont  |       |       |       |       |       |       |
|---|----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|   |    | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    |
|   | 0  | -0.12 | -0.10 | -0.11 | -0.07 | -0.12 | -0.14 | -0.12 | -0.18 | -0.10 | -0.09 | -0.08 | -0.08 |
|   | 1  | -0.18 | -0.09 | -0.14 | -0.10 | -0.08 | -0.08 | -0.06 | -0.12 | -0.07 | -0.07 | -0.12 | -0.15 |
|   | 2  | -0.06 | -0.12 | -0.10 | -0.09 | -0.11 | -0.05 | -0.04 | -0.13 | -0.06 | -0.10 | -0.13 | -0.18 |
|   | 3  | -0.13 | -0.13 | -0.10 | -0.12 | -0.16 | -0.03 | -0.06 | -0.10 | -0.05 | -0.07 | -0.09 | -0.14 |
|   | 4  | -0.19 | -0.23 | -0.05 | -0.15 | -0.16 | 0.00  | -0.04 | -0.05 | -0.05 | -0.06 | -0.09 | -0.13 |
|   | 5  | -0.27 | -0.15 | -0.07 | -0.13 | -0.10 | -0.13 | -0.16 | -0.20 | -0.08 | -0.09 | -0.12 | -0.16 |
|   | 6  | -0.30 | -0.04 | -0.09 | -0.05 | -0.12 | -0.08 | -0.09 | -0.14 | -0.07 | -0.04 | -0.10 | -0.09 |
|   | 7  | -0.19 | -0.06 | -0.12 | -0.13 | -0.15 | -0.11 | -0.10 | -0.15 | -0.09 | -0.05 | -0.12 | -0.13 |
|   | 8  | -0.32 | -0.18 | -0.21 | -0.23 | -0.25 | -0.28 | -0.25 | -0.23 | -0.14 | -0.11 | -0.11 | -0.17 |
|   | 9  | -0.23 | -0.28 | -0.18 | -0.22 | -0.19 | -0.31 | -0.27 | -0.24 | -0.12 | -0.11 | -0.14 | -0.12 |
| Н | 10 | -0.19 | -0.23 | -0.29 | -0.32 | -0.23 | -0.31 | -0.23 | -0.31 | -0.17 | -0.15 | -0.06 | -0.04 |
| О | 11 | -0.26 | -0.17 | -0.35 | -0.32 | -0.37 | -0.32 | -0.31 | -0.36 | -0.21 | -0.22 | -0.04 | 0.00  |
| u | 12 | -0.21 | -0.01 | -0.14 | -0.07 | -0.12 | -0.24 | -0.20 | -0.16 | -0.07 | -0.02 | -0.03 | -0.05 |
| r | 13 | -0.33 | -0.32 | -0.29 | -0.29 | -0.21 | -0.35 | -0.26 | -0.15 | -0.11 | -0.06 | -0.15 | -0.13 |
|   | 14 | -0.20 | -0.08 | -0.15 | -0.06 | -0.11 | -0.13 | -0.12 | -0.34 | -0.29 | -0.30 | -0.13 | -0.14 |
|   | 15 | -0.22 | -0.31 | -0.29 | -0.27 | -0.25 | -0.29 | -0.28 | -0.33 | -0.25 | -0.28 | -0.25 | -0.25 |
|   | 16 | -0.16 | -0.20 | -0.22 | -0.24 | -0.25 | -0.24 | -0.19 | -0.28 | -0.23 | -0.26 | -0.22 | -0.28 |
|   | 17 | -0.10 | -0.02 | -0.11 | -0.11 | -0.16 | -0.14 | -0.11 | -0.20 | -0.14 | -0.18 | -0.17 | -0.20 |
|   | 18 | -0.17 | -0.12 | -0.16 | -0.17 | -0.18 | -0.18 | -0.19 | -0.20 | -0.15 | -0.18 | -0.16 | -0.15 |
|   | 19 | -0.18 | -0.23 | -0.19 | -0.24 | -0.18 | -0.20 | -0.17 | -0.16 | -0.13 | -0.16 | -0.15 | -0.13 |
|   | 20 | -0.15 | -0.11 | -0.12 | -0.16 | -0.14 | -0.14 | -0.15 | -0.12 | -0.12 | -0.13 | -0.11 | -0.11 |
|   | 21 | -0.15 | -0.10 | -0.12 | -0.14 | -0.14 | -0.14 | -0.12 | -0.20 | -0.12 | -0.12 | -0.11 | -0.11 |
|   | 22 | -0.15 | -0.09 | -0.12 | -0.12 | -0.12 | -0.12 | -0.12 | -0.23 | -0.11 | -0.11 | -0.10 | -0.09 |
|   | 23 | -0.15 | -0.11 | -0.10 | -0.11 | -0.14 | -0.13 | -0.13 | -0.16 | -0.10 | -0.08 | -0.05 | -0.03 |
|   |    |       |       |       |       |       |       |       |       |       |       |       |       |

 Due to a combination of poor round-trip efficiency and little coordination in charging behavior, almost all month/hours show charging, on average



# PBI PROJECTS APPEAR TO BE RESPONDING TO DEMAND CHARGES, BUT SAMPLE IS SMALL

Average Non-coincident Peak Load Reduction by Month per Customer, n = 5 PBI Projects with a full summer of load and dispatch data available, 2015



- Significant increase in non-coincident peak load reduction during summer months, compared to the rest of the year
- PBI projects saved an average of ~\$0.8 per kW rebated storage capacity in demand charges

(for n= 9 PBI projects with load and dispatch data available for any months in 2015)



### **2015 COINCIDENT PEAK IMPACTS**

PBI Projects Reduced Peak

Non-PBI Project slightly Increased Peak (due in part to low RTE)



## NON-RESIDENTIAL AES CO<sub>2</sub> IMPACTS

Alignment of grid emissions with charge/discharge

PBI

» Generally discharging during higher marginal emission hours Marginal Emissions Compared to Aggregate Discharge (Charge), PBI Projects, 2015



Non-PBI

With low efficiency, net charging in all hours

#### Marginal Emissions Compared to Aggregate Discharge (Charge), No-residential, Non-PBI Projects, 2015



## NON-RESIDENTIAL AES CO2 IMPACTS

Population of estimates

- Net increase in GHG emissions for both PBI and non-PBI systems
- Round trip efficiency losses outweigh GHG savings for PBI systems despite onpeak discharge
- More variable discharge for non-PBI → larger increase in GHG emissions
- Note: these impacts do not include the contribution of storage to integrating renewables





## RESIDENTIAL AES PROJECTS

## RESIDENTIAL AES ANALYSIS CONSTRAINED BY UNRELIABLE DATA

- » Difficult to obtain data
  - Many conversations and follow up, delays, pushback, etc.
  - One data provider provided data too late and limited (most just 2016) to be included
- » Residential data provided had quality issues
  - Round Trip Efficiencies > 100%
  - Data showed inaccuracies in both the upward and downward direction, depending on data magnitude
- » Load Data
  - Utilities required NDA's that took significant time
  - Imperfect match to SGIP projects



### **RES ANALYSES**

### With our data sample, we were able to analyze:

| Metric                         | Residential AES projects | Data gaps                                         |
|--------------------------------|--------------------------|---------------------------------------------------|
| Charge/discharge timing        | ✓ (2015 only)            |                                                   |
| Utilization / capacity factors |                          | Accurate magnitude of charge/discharge activity   |
| Round-trip efficiency          |                          | charge, alsonarge activity                        |
| Charging behavior motivation   |                          | Accurate measures of both timing and magnitude of |
| Coincident peak impacts        |                          | charge/discharge activity                         |
| CO <sub>2</sub> impacts        |                          |                                                   |

## RESIDENTIAL PROJECTS APPEAR TO BE CHARGING FROM SOLAR & RESPONDING TO RATES

Total kWh of Discharge (Charge) per kW Rebated Capacity, Residential Projects, 2015

| Total kWh of Solar Output  | ., |
|----------------------------|----|
| Residential Projects, 2015 | 5  |

|   |    | Month |       |       |       |       |       |       |       |       |       |       |       |
|---|----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|   |    | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    |
|   | 0  | -0.28 | -0.25 | -0.28 | -0.25 | -0.26 | -0.26 | -0.28 | -0.29 | -0.29 | -0.29 | -0.24 | -0.26 |
|   | 1  | -0.28 | -0.25 | -0.28 | -0.25 | -0.26 | -0.26 | -0.29 | -0.29 | -0.29 | -0.29 | -0.24 | -0.26 |
|   | 2  | -0.28 | -0.27 | -0.28 | -0.25 | -0.26 | -0.26 | -0.29 | -0.29 | -0.29 | -0.29 | -0.25 | -0.26 |
|   | 3  | -0.28 | -0.25 | -0.28 | -0.25 | -0.26 | -0.26 | -0.29 | -0.30 | -0.29 | -0.29 | -0.25 | -0.27 |
|   | 4  | -0.29 | -0.25 | -0.28 | -0.25 | -0.26 | -0.26 | -0.29 | -0.30 | -0.29 | -0.29 | -0.26 | -0.27 |
|   | 5  | -0.28 | -0.25 | -0.28 | -0.25 | -0.27 | -0.27 | -0.29 | -0.30 | -0.29 | -0.29 | -0.26 | -0.27 |
|   | 6  | -0.28 | -0.25 | -0.28 | -0.32 | -0.50 | -0.54 | -0.48 | -0.37 | -0.30 | -0.29 | -0.26 | -0.28 |
|   | 7  | -0.28 | -0.26 | -0.44 | -0.78 | -1.10 | -0.94 | -0.97 | -0.79 | -0.61 | -0.44 | -0.30 | -0.28 |
|   | 8  | -0.31 | -0.62 | -1.47 | -2.25 | -2.59 | -2.20 | -2.19 | -2.05 | -2.00 | -1.84 | -1.12 | -0.50 |
|   | 9  | -1.50 | -2.17 | -3.65 | -3.30 | -2.73 | -3.06 | -3.77 | -3.91 | -3.87 | -4.08 | -3.42 | -1.89 |
| Н | 10 | -2.90 | -2.85 | -1.71 | -0.64 | -0.47 | -2.05 | -2.95 | -2.88 | -3.16 | -3.47 | -5.18 | -3.07 |
| 0 | 11 | -1.60 | -0.46 | -0.31 | -0.45 | -0.31 | -2.14 | -3.58 | -3.29 | -3.42 | -2.92 | -6.04 | -2.36 |
| u | 12 | -1.05 | -0.33 | -0.29 | -0.44 | -0.35 | -2.05 | -4.01 | -3.53 | -3.76 | -2.30 | -5.95 | -2.04 |
| r | 13 | -0.72 | -0.67 | -0.36 | -0.24 | -0.37 | -1.65 | -3.81 | -3.32 | -3.24 | -1.10 | -3.23 | -1.33 |
|   | 14 | -0.82 | -0.45 | -0.56 | -0.74 | -0.83 | -0.88 | -1.63 | -1.12 | -1.22 | -0.17 | -0.56 | -0.89 |
|   | 15 | -0.42 | -0.44 | -0.72 | -0.50 | -0.40 | -0.61 | -1.18 | -0.56 | -0.68 | 0.17  | 1.08  | -0.55 |
|   | 16 | -0.63 | -0.55 | -0.33 | -0.36 | -0.50 | 1.39  | 4.19  | 3.46  | 4.28  | 1.41  | 1.80  | -0.07 |
|   | 17 | -0.47 | -0.52 | -0.56 | -0.55 | -0.62 | 2.01  | 4.44  | 3.81  | 3.78  | 1.53  | 2.93  | 0.25  |
|   | 18 | -0.22 | -0.30 | -0.48 | -0.43 | -0.50 | 2.79  | 4.54  | 3.56  | 3.25  | 1.62  | 3.30  | 0.26  |
|   | 19 | -0.22 | -0.21 | -0.27 | -0.31 | -0.39 | -0.47 | -0.53 | -0.42 | -0.19 | 0.55  | 2.89  | 0.24  |
|   | 20 | -0.24 | -0.23 | -0.27 | -0.25 | -0.26 | -0.23 | -0.25 | -0.25 | -0.24 | -0.29 | 2.27  | 0.24  |
|   | 21 | -0.27 | -0.25 | -0.27 | -0.25 | -0.26 | -0.23 | -0.25 | -0.27 | -0.27 | -0.29 | -0.23 | -0.23 |
|   | 22 | -0.28 | -0.25 | -0.27 | -0.25 | -0.26 | -0.24 | -0.27 | -0.28 | -0.27 | -0.29 | -0.24 | -0.24 |
|   | 23 | -0.28 | -0.25 | -0.27 | -0.25 | -0.26 | -0.25 | -0.28 | -0.29 | -0.28 | -0.29 | -0.24 | -0.25 |

|   |    |         |         |         |         |         |         | ,       | ,       |         |         |         |         |
|---|----|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
|   |    | Month   |         |         |         |         |         |         |         |         |         |         |         |
|   |    | 1       | 2       | 3       | 4       | 5       | 6       | 7       | 8       | 9       | 10      | 11      | 12      |
|   | 0  | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    |
|   | 1  | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    |
|   | 2  | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    |
|   | 3  | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    |
|   | 4  | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    |
|   | 5  | 0.00    | 0.00    | 0.00    | 0.04    | 1.37    | 5.22    | 1.24    | 0.04    | 0.00    | 0.00    | 0.00    | 0.00    |
|   | 6  | 0.00    | 0.00    | 0.72    | 33.84   | 132.22  | 160.17  | 117.25  | 45.73   | 6.02    | 0.56    | 0.01    | 0.00    |
|   | 7  | 0.43    | 3.61    | 89.60   | 302.35  | 492.07  | 402.76  | 412.66  | 305.38  | 198.64  | 89.79   | 13.29   | 1.20    |
|   | 8  | 70.69   | 240.20  | 738.17  | 1209.20 | 1426.98 | 1221.52 | 1205.92 | 1113.81 | 1065.01 | 960.35  | 516.22  | 120.95  |
|   | 9  | 751.56  | 1175.95 | 2077.80 | 1920.67 | 1643.83 | 1847.94 | 2238.92 | 2284.08 | 2249.48 | 2366.15 | 1940.27 | 1003.33 |
| н | 10 | 1681.15 | 1725.66 | 1089.06 | 502.17  | 435.73  | 1317.05 | 1854.55 | 1778.56 | 1934.10 | 2156.00 | 3044.13 | 1750.61 |
| 0 | 11 | 1211.06 | 585.37  | 431.15  | 494.85  | 436.46  | 1423.47 | 2274.63 | 2061.77 | 2124.16 | 1936.95 | 3624.31 | 1389.51 |
| u | 12 | 1054.19 | 545.29  | 499.39  | 554.83  | 508.31  | 1406.07 | 2567.07 | 2226.06 | 2360.23 | 1648.94 | 3687.04 | 1304.05 |
| r | 13 | 977.38  | 704.08  | 544.40  | 563.56  | 604.52  | 1257.41 | 2527.71 | 2148.21 | 2112.89 | 1082.45 | 2411.80 | 976.69  |
|   | 14 | 1031.63 | 629.47  | 716.49  | 832.44  | 918.46  | 895.37  | 1362.99 | 981.09  | 1061.76 | 774.02  | 1316.87 | 789.36  |
|   | 15 | 664.60  | 582.05  | 780.99  | 706.62  | 680.45  | 740.71  | 1084.70 | 643.98  | 748.22  | 786.27  | 736.53  | 613.50  |
|   | 16 | 526.38  | 519.67  | 478.07  | 511.51  | 633.21  | 795.12  | 448.78  | 433.37  | 374.86  | 594.82  | 412.73  | 351.38  |
|   | 17 | 247.94  | 341.06  | 416.54  | 451.67  | 548.50  | 458.04  | 405.89  | 341.22  | 354.30  | 356.38  | 150.26  | 97.80   |
|   | 18 | 13.75   | 111.18  | 238.62  | 266.92  | 336.40  | 310.78  | 331.93  | 285.48  | 217.36  | 60.59   | 0.91    | 0.25    |
|   | 19 | 0.00    | 0.19    | 18.75   | 98.44   | 180.85  | 246.09  | 279.27  | 177.88  | 23.03   | 0.02    | 0.00    | 0.00    |
|   | 20 | 0.00    | 0.00    | 0.00    | 0.11    | 7.08    | 35.61   | 30.37   | 2.88    | 0.00    | 0.00    | 0.00    | 0.00    |
|   | 21 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    |
|   | 22 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    |
|   | 23 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    |

Box shows hours that correspond with utility's higher TOU rate

- All residential projects in our sample are paired with solar
- Problems with data integrity → low confidence on discharge magnitudes
- However, by comparing values we do observe that these residential projects charge mid-day (when solar output is highest) and discharge in peak evening hours

### **AES ANALYSES - 2015**

## With our data sample, we were able to analyze:

| Metric                                   | Non-Res PBI                 | Non-Res Non-PBI | Res      |
|------------------------------------------|-----------------------------|-----------------|----------|
| Utilization / capacity factors           | ✓                           | ✓               | ×        |
| Round-trip efficiency                    | ✓                           | ✓               | ×        |
| Charge/discharge timing                  | ✓                           | ✓               | <b>✓</b> |
| Coincident peak impacts                  | ✓                           | ✓               | ×        |
| Emission impacts                         | ✓                           | ✓               | ×        |
| Motivation & Non-Coincident peak impacts | ✓ (indicative only:<br>n=5) | ×               | ×        |
| Charging from Solar                      | <b>x</b> *                  | <b>x</b> *      | ×        |

<sup>\*</sup>Only a fraction of non-res systems were installed at sites with solar

# LOOKING FORWARD: OPPORTUNITIES FOR AES





### **LOOKING FORWARD**

- » Peak and CO<sub>2</sub> impacts assessed are based on 2015 <u>behavior</u> and <u>system conditions</u>
- » System conditions will change over time:

CA is on track to increase its renewable generation substantially, which will magnify the potential grid and emission benefits of well-timed storage dispatch.

» As for behavior:

Restructured incentives and tariffs, AES projects have the potential to reduce customer peak impacts and carbon dioxide emissions in the future.

#### RECOMMENDATIONS ON AES

To better capture the value of SGIP AES projects:

- 1. Ensure better data measurement provision by SGIP recipients
- 2. Increase storage project RTE requirements and enforcement
- 3. Improving rate design to better incentivize desired behavior
- 4. Making sure the party responsible for dispatch receives the appropriate signals to encourage charging and discharging for maximum coincident system peak load and CO<sub>2</sub> reductions
- Include renewable integration benefits of storage in future impact evaluations

Note: our report expands somewhat on these ideas, but further policy exploration is needed beyond this program evaluation

## Questions?



## **THANK YOU**



## **APPENDIX SLIDES**



# SCALING SAMPLE TO POPULATION CO<sub>2</sub> & COINCIDENT PEAK IMPACTS

- The AES projects in our sample came "on-line" at various points in 2015
- To scale sample CO<sub>2</sub> and coincident peak impacts to the SGIP AES program population:
  - 1. Calculate % of 2015 for which each project was on-line
  - Multiply this % by the project's nameplate capacity
     → de-rated capacity for each project
  - 3. Calculate *de-rate factor* for each project = de-rated capacity / nameplate capacity
  - 4. Calculate average de-rate factor across the sample
  - Calculate estimated program-wide de-rated capacity =
     Average de-rate factor \* program-wide nameplate capacity by 2015 year end

# SCALING SAMPLE TO POPULATION CO<sub>2</sub> & COINCIDENT PEAK IMPACTS

#### » Program-wide CO<sub>2</sub> estimate:

- E3 calculated tons of CO<sub>2</sub> per kW of de-rated capacity using each project's net CO<sub>2</sub> emissions and de-rated capacity
- This statistic \* program-wide de-rated capacity = program-wide CO<sub>2</sub> emissions

#### » Program-wide Coincident Peak estimate:

- For each peak hour "bucket" (top hour, 2-50, 51-100, 101-150, 151-200), E3 calculated average load contribution for each project
- These averages divided by each project's de-rated capacity
   average contribution per kW of de-rated capacity for each bucket
- This statistic was then scaled up by the program-wide de-rated capacity for each bucket

## NON-PBI, NON-RES PROJECTS (<30 KW): LOW & INFREQUENT USE, LOW EFFICIENCY

Percent of "High Discharge Days" as a function of Capacity Factor, Non-PBI Non-Res Projects, 2015



Projects are used infrequently and at low % of their available discharge

total possible discharge (5,200 hrs/yr)

# E3 MARGINAL EMISSIONS METHODOLOGY



## EMISSIONS AS A FUNCTION OF MARKET PRICES

- » E3 uses a standard methodology across its public tools (RPS Calculator, Avoided Cost Calculator, etc.) to convert from market energy prices to marginal heat rates in the CAISO
  - Calculated separately for Northern (NP-15) and Southern (SP-15) California
- Methodology assumes that a natural gas-fired power plant is the marginal generator in the CAISO when the day-ahead LMP is above zero
- This marginal heat rate, in Btu/MWh, combined with an emission rate gives a final marginal emission rate in tons CO2/MWh
  - This analysis assumed a conversion factor of 0.053 metric tons CO2/MMBtu

### CALCULATING MARGINAL HEAT RATE

For every hour h of the year:

```
Marginal\ Heat\ Rate_{\pmb{h}} = \frac{(Market\ Energy\ Price_{\pmb{h}} - Variable\ O\&M)}{(Wholesale\ Gas\ Price + Delivery\ Adder + Carbon\ Adder)}
```

- » Market Energy Prices: Hourly day-ahead market clearing prices in Northern (NP-15) and Southern (SP-15) California
- » Variable O&M: Assumed to be \$0.68/MWh for the ongoing costs of maintaining the marginal gas generator
- » Wholesale Gas Price: 2014 and 2015 daily gas prices from EIA for SoCal Citygate or PG&E Citygate hubs
  - Daily prices are recorded only for weekdays, so weekends are assigned the price of the adjacent weekday

### CALCULATING MARGINAL HEAT RATE

» For every hour h of the year:

```
Marginal\ Heat\ Rate_{h} = \frac{(Market\ Energy\ Price_{h} - Variable\ O\&M)}{(Wholesale\ Gas\ Price + Delivery\ Adder + Carbon\ Adder)}
```

- » Delivery Adder: Standard value in \$/mmBtu associated with delivery of wholesale gas to power plants where it is burned
  - Taken from E3's RPS Calculator
- Carbon Adder: Represents the price of carbon under California Cap and Trade in 2015
  - The value used in this analysis is \$12.44/ton
  - Source: 2015 GHG price from the California Energy Commission's 2015 Integrated Energy Policy Report (IEPR)

## END-CASE ASSUMPTIONS FOR MARGINAL EMISSIONS METHODOLOGY

- When the day-ahead LMP is at or below zero, MHR is assumed to be zero. This assumption is consistent with renewables being the marginal resource
- When calculated MHR falls between 0 and 6,900 Btu/kWh, MHR is instead assumed to be 6,900 Btu/kWh. This is because the lowest heat rate gas plants in the CAISO are ~6,900 Btu/kWh.
- When calculated MHR is above 12,500 Btu/kWh, MHR is instead assumed to be 12,500 Btu/kWh. This is because the highest heat rate gas plants in the CAISO are ~12,500 Btu/kWh.

#### **EMISSIONS WITH BUILD MARGIN**

- » Based on approach outlined in D. 15-11-026 which addresses two components of GHG emissions
  - Operating Margin Component
  - Build Margin Component
  - "SGIP projects have an operating margin effect during the first five years of operations, and a build margin effect thereafter"
- » Operating Margin
  - Operating margin component based on actual 8,760 hourly CO<sub>2</sub> emission rates developed by E3 using market price shapes
- » Build Margin
  - The build margin component represents the zero-emission renewables that were not built because of capacity built under the SGIP
    - The build margin is correlated to the RPS
    - Build margin modified is one minus the RPS percentage applicable the year the project was completed
    - Avoided GHG emissions were calculated as shown below:

 $Avoided\ Grid\ GHG_{p,h}= (1-RPSpct_y)SGIP\ Generation\ MWh_{p,h}\cdot Marginal\ Emissions\ Rate_h\ \frac{Metric\ Tons}{MWh}$ 

**Energy+Environmental Economics**